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Abstract

The vehicle routing problem with time windows (VRPTW) is the problem of minimizing the
total travel distance of a number of vehicles, under capacity and time window constraints, where
every customer must be visited exactly once by a vehicle. We consider two generalizations of the
VRPTW and propose local search algorithms. The first one treats traveling times as variables
and introduce cost functions on them. This enables us to shorten the traveling times by adding
some cost, thus introducing a new dimension to consider flexible solutions. The other allows both
traveling times and traveling costs being time-dependent, so that it can treat time-dependent
situations such as rush-hour traffic jam. In our local search algorithms for these problems,
after fixing a route of each vehicle, we must compute an optimal time schedule of each route.
We investigate the complexity of this subproblem and show that it can be efficiently solved by
dynamic programming under some conditions.

1 Introduction

The vehicle routing problem with time windows (VRPTW) is the problem of minimizing the total
travel distance of a number of vehicles, under capacity and time window constraints, where
every customer must be visited exactly once by a vehicle. The capacity constraint signifies
that the total load on a route cannot exceed the capacity of the assigned vehicle. The time
window constraint signifies that each vehicle must start the service at each customer in the
period specified by the customer. The VRPTW has a wide range of applications such as bank
deliveries, postal deliveries, school bus routing and so on, and it has been a subject of intensive
research focused mainly on heuristic and metaheuristic approaches. In this problem, even just
finding a feasible schedule with a given number of vehicles is known to be NP-complete. It
may not be reasonable to restrict the search only within the feasible region, especially when the
constraints are tight. Moreover, in real-world situations, time window and capacity constraints
can often be violated to some extent. The violation of constraints is usually penalized and
added to the objective function [3, 5]. Ibaraki et al. [3] proposed the vehicle routing problem
with general time windows (VRPGTW), where the time window constraints are treated as cost
functions that can be non-convex and/or discontinuous as long as it is piecewise linear.

We proposed two generalizations of the VRPGTW in [1, 2], which are also generalizations
of the VRPTW. This extended abstract is a short summary of our recent results in [1, 2]. The
first one is the vehicle routing problem with flexible time windows and traveling times. In this
generalization, we treat traveling times as variables. In practice, traveling times can be changed
with some cost (e.g., the traveling time can be shortened by paying the turnpike toll). Our goal
is to find such a flexible solution. The other one is a time-dependent case of the VRPGTW. In
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real situations, traveling time between customers is often dependent on the leaving time, and it
cannot be treated as a constant in such cases (e.g., rush-hour traffic jam). In this generalization,
traveling times and costs are dependent on the leaving time. Recently Ichoua et al. [4] proposed
a similar generalization of the VRPTW, where each customer has only one time window and the
objective is to minimize the total traveling time. Note that, in our generalization, each traveling
cost can be different from the traveling time.

Let G = (V,E) be a complete directed graph with vertex set V = {0, 1, . . . , n} and edge set
E = {(i, j) | i, j ∈ V, i 6= j}, and M = {1, 2, . . . ,m} be a vehicle set. Let σk denote the route
traveled by vehicle k, where σk(h) denotes the hth customer in σk, and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one route σk, and is visited by the vehicle
k exactly once. We denote by nk the number of customers in σk. We define σk(0) = 0 and
σk(nk +1) = 0 for all k (i.e., each vehicle k ∈ M leaves the depot and comes back to the depot).

In both generalizations, our objective function is a weighted sum of the total time window
cost for customers, the total traveling cost, and the total capacity excess for vehicles. If vehicle
routes σ are fixed, the problem is separated into m scheduling problems of finding the optimal
start times for each σk. Let cost(σk) be the optimal cost of σk (i.e., when the schedule of vehicle
k on σk is optimized). Then, the problem can be represented as:

minimize
m∑

k=1

cost(σk)

subject to (σ1, σ2, . . . , σm) ∈ F,

where F is the set of the feasible route sets (i.e, every customer is visited exactly once by
a vehicle). Hence our algorithm searches σ by local search and solves the corresponding m
scheduling problems for each σ generated during the search. In the following sections, we discuss
two scheduling problems corresponding to the generalizations, respectively. How to search σk

will be discussed in Section 4.
For convenience, in Sections 2 and 3, we assume that vehicle k visits customers 1, 2, . . . , nk

in this order and let customer nk + 1 represent the arrival at the depot.

2 The vehicle routing problem with flexible time windows and
traveling times

Here we formulate the vehicle routing problem with flexible time window and traveling time
constraints (see the details in [1]). We treat the traveling time as the difference between the
start times of services at two consecutive customers, and introduce its cost function.

Each customer i, each vehicle k and each edge (i, j) ∈ E are associated with:

1. a fixed quantity ai (≥ 0) of goods to be delivered to i,

2. a time window cost function pi(t) of the start time t of the service at i (p0(t) is the time
window cost function of the arrival time t at the depot),

3. a capacity uk (≥ 0) of k,

4. a traveling time cost function qij(t) of the traveling time t from i to j.
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We assume a0 = 0 without loss of generality. We assume that each time window cost function
pi(t) is nonnegative, piecewise linear and lower semicontinuous (i.e., pi(t) ≤ limε→0 min{pi(t +
ε), pi(t−ε)} at every discontinuous point t). Note that pi(t) can be non-convex and discontinuous
as long as it satisfies the above conditions. We also assume pi(t) = +∞ for t < 0 so that the start
time t of the service is nonnegative. Similarly, we assume that each traveling time cost function
qij(t) is nonnegative, piecewise linear and lower semicontinuous. We also assume qij(t) = +∞
for t < 0 so that the traveling time t between customers is nonnegative. These assumptions
ensure the existence of an optimal solution. We further assume that the linear pieces of each
piecewise linear function are given explicitly.

We now consider the problem of determining the times to start services at customers in a
given route σk so that the total of time window and traveling time costs is minimized. The
scheduling problem is formulated as follows:

minimize
nk+1∑
h=1

ph(sh) +
nk+1∑
h=1

qh−1,h(sh − sh−1)

subject to s0 = 0,

where sh is the start time of service of customer h.
We proved that this problem is NP-hard in general. Under the assumption that each break-

point of the input functions is integer (the restricted problem is still NP-hard), we proposed a
dynamic programming algorithm of pseudo polynomial time. We showed that the same dynamic
programming can be implemented so that, if each traveling time cost function is convex (but
the time window cost functions can be general), it runs in O (nk∆1(σk)) time, where

∆1(σk) =
nk+1∑
h=1

δ(ph) +

nk+1∑
h=1

δ̂(ph)

 nk+1∑
h=1

δ(qh−1,h)

 ,

δ(·) is the number of linear pieces of the argument function, and δ̂(·) is the number of convex
intervals of the argument function. Note that ∆1(σk) is of polynomial order of the input size.

3 The time-dependent vehicle routing problem with time win-
dows

In this section, we formulate the time-dependent vehicle routing problem with time windows
(see the details in [2]). We introduce traveling time and cost functions between each customer,
whose values are dependent on the start time of traveling.

In this problem, each customer i, each vehicle k and each edge (i, j) ∈ E are associated with:

1. a fixed quantity ai (≥ 0) of goods to be delivered to i,

2. a time window cost function pi(t) of the start time t of the service at i (p0(t) is the time
window cost function of the arrival time t at the depot),

3. a capacity uk (≥ 0) of k,

4. a time-dependent traveling time function λij(t) of the start time t of traveling from i to j,

5. a time-dependent traveling cost function rij(t) of the start time t of traveling from i to j.
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We assume a0 = 0 without loss of generality. We assume that each time window cost functions
pi(t) is nonnegative, piecewise linear and lower semicontinuous as in Section 2, and that each
traveling cost function rij(t) satisfies the same conditions as pi(t). We also assume that each
traveling time function λij(t) is nonnegative, piecewise linear and continuous and that λij(t)
satisfies t ≤ t′ ⇒ t+λij(t) ≤ t′+λij(t′) (called the FIFO condition in this paper). In our problem,
the linear pieces of each piecewise linear function are given explicitly. Then the scheduling
problem is formulated as follows:

minimize
nk+1∑
h=1

ph(sh) +
nk∑

h=0

rh,h+1(th)

subject to sh ≤ th, 1 ≤ h ≤ nk

th + λh,h+1(th) ≤ sh+1, 0 ≤ h ≤ nk,

where sh is the start time of service of customer h and th is the start time of traveling from
customer h.

We proposed a dynamic programming algorithm that solves the problem in O(nk∆2(σk))
time, where

∆2(σk) =
nk+1∑
h=1

δ(pσk(h)) + δ(rσk(h−1),σk(h)) + δ(λσk(h−1),σk(h))

and δ(·) is the number of linear pieces of the argument function. Note that ∆2(σk) is the same
as the input size of the problem. If traveling cost and time functions are constant functions (i.e.,
if there is no time dependency), this time complexity of the dynamic programming algorithm
becomes the same as that of Ibaraki et al. [3], which deals with this special case.

In the case the FIFO condition does not hold, whether the algorithm runs in polynomial
time or not, and whether the scheduling problem in this section is NP-hard or not are both
open.

4 Framework of our algorithms

In this section, we describe a framework of our local search (LS) for finding good visiting orders
σ = (σ1, σ2, . . . , σm). It starts from an initial solution σ and repeats replacing σ with a better
solution in its neighborhood N(σ) until no better solution is found in N(σ). We evaluate a
solution σ by

∑m
k=1 cost(σk). For N(σ), we use standard neighborhoods called 2-opt∗, cross

exchange and Or-opt neighborhoods with slight modifications. Each neighborhood is the set of
solutions which are obtained by applying its neighborhood operations to the current solution.
A 2-opt∗ operation removes two edges from two different routes (one from each) to divide
each route into two parts and exchanges the second parts of the two routes. A cross exchange
operation removes two paths from two routes (one from each) of different vehicles and exchanges
them. An intra-route operation removes a path and inserts it into another position of the same
route from the original position. Our LS searches the above intra-route neighborhood, 2-opt∗

neighborhood and cross exchange neighborhood, in this order. Whenever a better solution is
found, we immediately accept it (i.e., we adopt the first admissible move strategy), and resume
the search from the intra-route neighborhood.

To achieve further improvement, we use the iterated local search (ILS), which iterates LS
many times from those initial solutions generated by perturbing the best solution obtained
by then. Moreover, in the evaluation of these neighborhood solutions, we reduce the time
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to compute the dynamic programming in both generalizations by using information from the
previous computation. We also incorporate other ideas proposed in Ibaraki et al. [3] to make
the search more efficient.

5 Computational experiments

In this section, we briefly summarize our experimental results for the two problems.

5.1 The vehicle routing problem with flexible time windows and traveling
times

We conducted experiments for the benchmark instances of the VRPTW and the instances with
flexible time windows and traveling times, which we generated from the former. For the VRPTW
instances, our algorithm could obtain the same quality as the best known solutions for many
instances. Furthermore, for the generated instances, we could obtain solutions with smaller
number of vehicles or with much shorter traveling distances than the best known solutions of
the original instances by allowing small violation of constraints (i.e., shortening the traveling
times or breaking the time windows slightly). These violations should be acceptable in many
practical applications, or at least it provides the information about feasibility bottlenecks. This
kind of information could not be obtained by other standard approaches.

5.2 The time-dependent vehicle routing problem with time windows

We conducted experiments for the time-dependent vehicle routing problem with time windows,
which we generated from the benchmark instances of the VRPTW. For comparison purposes,
we also applied our algorithm to the instances after replacing the time-dependent traveling time
with the fixed constant determined by taking the average of the traveling time in the whole
periods, and only evaluated the output solution exactly (i.e., considering the time-dependency).
This simulates the situation where we do not have an algorithm that can handle time-dependency
during the search. We could observe that both time window costs and traveling costs obtained
by considering time-dependency during the search are smaller than those without considering
time-dependency during the search. The deference becomes larger as the instances become more
time-dependent. This indicates the usefulness of our algorithm that can handle time-dependency.

6 Conclusion

We considered two generalizations of the vehicle routing problem with time windows and pro-
posed local search algorithms. The first one treats traveling times as variables and introduce
cost functions on them. This enables us to shorten the traveling times with some cost and to
find flexible solutions. The other allows both traveling times and traveling costs to be time-
dependent functions, and it can treat time-dependent situations such as rush-hour traffic jam.
Both generalizations are very general, and include various problems such as parallel machine
scheduling problems as their special cases. In our local search procedure, after fixing a route
of each vehicle, we must compute an optimal time schedule of each route. We investigated the
complexity of this subproblem and showed that it can be efficiently solved by dynamic pro-
gramming under some conditions. We then confirmed through computational experiments the
benefits of the proposed generalizations.
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