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Abstract: The irregular strip packing problem asks to place a set of polygons within a rectangular
strip of fixed height without overlap, so as to minimize the strip width required. We consider an
overlap minimization problem which minimizes the amount of overlap penalty for all pairs of poly-
gons within a given bound of strip width. We propose a local search algorithm which translates
a polygon in horizontal and vertical directions iteratively, and incorporate it in metaheuristic ap-
proaches called the iterated local search and the guided local search. Computational results show
that our algorithm is competitive with other existing algorithms.
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1 Introduction

Many cutting and packing problems appear in various industries such as wood, textile, sheet metal,
plastics, glass and leather. The irregular strip packing problem is one of cutting and packing prob-
lems that asks to place a set of polygons within a rectangular strip of fixed height without overlap,
so as to minimize the strip width required (Fig. 1). The problem is known to be NP-hard even
without rotation. The problem is much harder than the rectangle strip packing problem because of
a burden of geometrical computation. However, based on rapid development of computing power
and theory of computational geometry, many approaches have been developed in recent years.

Figure 1: The irregular strip packing problem: a feasible solution

Albano and Sapuppo (1980) proposed a bottom-left heuristic algorithm that places polygons
one by one at the bottommost and leftmost position according to a sequence of input polygons,
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and used to a tree search to obtain a good sequence. Gomes and Oliveira (2002) used a local search
algorithm to find a good sequence for the bottom-left heuristics. Li and Milenkovic (1995) proposed
separation and compaction algorithms based on linear programming that reduce the strip width
and the amount of overlap, respectively. Bennell and Dowsland (2001), and Gomes and Oliveira
(2006) developed hybrid approaches of the bottom-left heuristic and linear programming to obtain
good solutions. Burke et al. (2006) proposed a new bottom-left fill heuristic algorithm which can
place shapes that include circular arcs and holes, and incorporated it with tabu search.

Egeblad et al. (2006) considered an overlap minimization problem which minimizes the amount
of overlap penalty for all pairs of polygons within a given bound of strip width. Here, they used the
area of intersection for a pair of polygons as the overlap penalty. For the problem, they proposed
a local search algorithm in which the neighborhood is any horizontal or vertical translation of a
given polygon from its current position. They proposed an efficient neighborhood search that finds
a position with the minimum total overlap penalty in its neighborhood, and incorporate it with
the guided local search (Voudouris and Tsang, 1999).

In this paper, we first propose another overlap minimization problem, in which we use an ap-
proximate penetration depth for a pair of polygons as the overlap penalty. We propose an efficient
implementation of the neighborhood search by utilizing a data structure called the no-fit polygon
(NFP). Based on this, we propose a local search algorithm which repeats translating a polygon in
horizontal and vertical directions until no better position is found in either direction, and incor-
porate it with the iterated local search and a variant of guided local search called the weighting
method (Selman and Kautz, 1993).

In the following section, we formulate the irregular strip packing problem and the overlap
minimization problem. In Section 4, we describe the local search algorithm with details concerning
its implementation. Finally, Section 5 presents the computational experiments and some concluding
remarks.

2 Formulation

The problem is described as follows: We are given a set of small polygons1 P = {P1, P2, . . . , Pn} and
a rectangular strip R = R(W ) of height H and width W called the stock sheet, where H is a given
constant and W is a positive variable. Each polygon Pi ∈ P has a set of modes Mi = {1, 2, . . . ,mi},
which specifies its configuration except for its position, e.g., reflection, rotation by a given degrees.
We denote polygon Pi ∈ P specified by a mode ki ∈ Mi by Pi(ki).

For convenience, we consider that each of polygons Pi ∈ P represents its inner region without
its boundary, and the strip R represents its inner region including its boundary. Let R = R(W )
be the complement (i.e., the outer region) of the strip R. We describe translations of polygons
by Minkowski sums (de Berg et al., 1998), i.e., we denote the translation of polygon Pi ∈ P by a
translation vector ti = (xi, yi) by Pi⊕ ti = {p+ ti | p ∈ Pi}. We describe a solution of this problem
by positions t = (t1, . . . , tn) and modes k = (k1, . . . , kn) of all polygons Pi ∈ P. Note that the
minimum width W is the x-coordinate interval between the leftmost and rightmost points of the
polygons placed by (t, k). The irregular strip packing problem is formally described as follows:

minimize W
subject to (Pi(ki) ⊕ ti) ∩ (Pj(kj) ⊕ tj) = ∅, (1 ≤ i < j ≤ n),

(Pi(ki) ⊕ ti) ∩ R(W ) = ∅, (1 ≤ i ≤ n),
W ∈ R+,
ti ∈ R2, (1 ≤ i ≤ n),
ki ∈ Mi, (1 ≤ i ≤ n).

The first constraint ensures that no pair of polygons overlaps, and the second constraint ensures
that no polygon protrudes from the strip.

1Polygons Pi ∈ P are not necessarily convex.
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We now consider a variant of the irregular strip packing problem called the overlap minimization
problem that minimizes the amount of the overlap penalty fij(t, k) for all pairs of polygons Pi, Pj ∈
P, while constraining the strip width W within a bound WUB given by users.

minimize F (t, k) =
∑

1≤i<j≤n

fij(t, k)

subject to (Pi(ki) ⊕ ti) ∩ R(WUB) = ∅, (1 ≤ i ≤ n),
ti ∈ R2, (1 ≤ i ≤ n),
ki ∈ Mi, (1 ≤ i ≤ n).

Egeblad et al. (2006) used the area of intersection of polygons Pi, Pj ∈ P as the overlap penalty
fij(t, k). In this paper, we use an approximate penetration depth of a pair of overlapping polygons
Pi and Pj instead. We define the approximate penetration depth fij(t, k, v) of a pair of overlapping
polygons Pi and Pj as the minimum translational distance in a given direction v = (vx, vy) (v ∈ R2)
to separate them. If a pair of polygons do not overlap, their approximate penetration depth is zero.
The approximate penetration depth is formally described as:

fij(t, k, v) = min{|z| | (Pi(ki) ⊕ ti) ∩ (Pj(kj) ⊕ tj ⊕ zv) = ∅, z ∈ R},

and the overlap penalty for a pair of polygons Pi and Pj is accordingly given by

fij(t, k) = min {fij(t, k, v) | v ∈ {ex, ey}} ,

where ex (resp., ey) is a unit vector of horizontal (resp., vertical) direction.

3 No-fit polygon

For fast computation of the overlap penalty fij(·), we introduce a data structure called the no-fit
polygon (NFP), which is often used in the irregular strip packing problem. The no-fit polygon
NFP(Pi, Pj) for a pair of polygons Pi and Pj is defined by

NFP(Pi, Pj) = Pi ⊕ (−Pj) = {p − q | p ∈ Pi, q ∈ Pj}.

We can easily check whether two polygons Pi and Pj overlap or not, by simply checking whether
the reference point of Pi is inside NFP(Pi, Pj) or not.

Reference point NFP(Pi , Pj)

Pi

Pj

Figure 2: An example of no-fit polygon (NFP)

When Pi and Pj are both convex, we can compute NFP(Pi, Pj) by the following simple proce-
dure. We first put the reference point of Pi at the origin, and slide Pj around Pi keeping in touch
with Pi. The NFP(Pi, Pj) is the inner region of the trajectory drawn by the reference point of Pj

(Fig. 2).
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We can also check whether a polygon Pi ∈ P protrudes from the strip R by NFP(R,Pi), i.e., a
polygon Pi protrudes from R if and only if the reference point of Pi is inside NFP(R,Pi).

Although it takes O(p2
1p

2
2) time to compute an NFP of two non-convex polygons with p1 and

p2 edges (de Berg et al., 1998) in the worst case, practical algorithms to compute it have been
proposed, e.g., by Bennell et al. (2001) and Burke et al. (2006).

penalty Fi(t, k, v) by decomposing them into convex elements, i.e., we detect the sets of over-
lapping positions as intervals for all pairs of convex elements and merge them. We note that
our algorithm uses only simple operations instead of difficult geometrical computations such as
Minkowski sums of non-convex polygons.

To facilitate the neighborhood search, we detect possibly overlapping polygons Pj ∈ P of Pi

before computing the overlap penalty function fij(t,k, v). We first project each polygon onto
the y-axis (resp., x-axis) when the polygon Pi moves in the horizontal (resp., vertical) direction
(Fig. 3). We then check the intersection of two intervals (ymin

i , ymax
i ) and (ymin

j , ymax
j ), which are

xi
min xi

max xj
min xj

max

yi
min

yi
max

yj
min

yj
max

Pi

Pj

Figure 3: Detecting possibly overlapping polygons by projection onto the x- and y- axes

the projections of two polygons Pi and Pj onto the y-axis. If (ymin
i , ymax

i ) ∩ (ymin
j , ymax

j ) = ∅ holds,
we can skip the computation of the overlap penalty fij(t, k,v) when Pi moves in the horizontal
direction.

The computation time of the algorithm is dominated by sorting of the event points of the
total overlap penalty function Fi(t, k, v). Since Egeblad et al. (2006) use the area of intersection
of polygons Pi and Pj as the overlap penalty function fij(t, k, v), the number of event points of
their total overlap penalty function Fi(t, k, v) of Pi is the product of the numbers of edges of the
polygon Pi and the other polygons Pj ∈ P \ {Pj}. On the other hand, since the number of event
points of our overlap penalty function fij(t, k, v) is always three when two polygons Pi and Pj are
both convex, the number of event points of our total overlap penalty function Fi(t, k, v) of Pi is
at most three times as the product of the numbers of convex elements in the polygon Pi and the
other polygons Pj ∈ P \ {Pj}. This implies that the number of event points of our overlap penalty
function becomes much smaller than those of Egeblad’s overlap penalty function, when all polygons
are convex or possible to divide a few convex elements.

3.1 Metaheuristics

It is often the case that local search (LS) alone may not attain a sufficiently good solution. To
improve the situation, many variants of simple LS have been developed, and their frameworks are
called metaheuristics. The iterated local search (ILS) and the guided local search (GLS) are repre-
sentative metaheuristic approaches, which are simple but are known to be quite effective (Glover
and Kochenberger, 2003). ILS repeats LS from different initial solutions generated by perturbing
the best solution so far. GLS repeats on adaptive evaluation function which is adaptively modified
to resume the search from the previous locally optimal solution. For the overlap minimization
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problem, we develop a hybrid approach of ILS and GLS, called the iterated guided local search
(IGLS).

We introduce a variant of GLS called the weighting method which has been proposed by Sel-
man and Kautz (1993) for the satisfiability problem (SAT). Based on preliminary computational
experiments, we adopt a modified overlap penalty function for a pair of polygons Pi, Pj ∈ P as
follows:

f̃ij(t, k) = wij · fij(t, k).

where wij is the penalty weight for a pair of polygons Pi and Pj . We also adopt the amount of the
modified overlap penalty as follows:

F̃ (t,k) =
∑

1≤i<j≤n

f̃ij(t,k).

The penalty weights wij are adaptively modified for every LS, i.e., if two polygons Pi(ki) ⊕ ti and
Pj(kj)⊕ tj overlap in the last locally optimal solution (t, k), GLS increases the penalty weight wij

by one.
ILS starts from the first initial solution generated by random placement as same as the simple

LS, and then the subsequent initial solutions are taken from their last locally optimal solutions
except for n iterations of LS. In case of n iterations of LS, the next initial solution is generated by
swapping the positions t̃∗i and t̃∗j of two polygons Pi, Pj ∈ P (i ̸= j) of the best solution (t̃∗, k̃∗) on
the adaptive evaluation function F̃ (·) obtained so far, where Pi and Pj are randomly selected from
P. If the new position ti = t̃∗j (resp., tj = t̃∗i ) of the polygon Pi (resp., Pj) is infeasible, ILS selects
another polygon randomly.

The outline of the iterated guided local search (IGLS) is given as follows. Here, iter and kick
denote the current number of iterations of restarting LS from the last improvement and the last
perturbation of the initial solution, respectively. max iter (an input parameter given by users)
specifies the upper bound on iter .

Iterated guided local search

Step1: Set iter ← 0 and kick ← 0, and initialize wij for all pairs of Pi, Pj ∈ P. Construct the first
initial solution (t, k) by random placement, and set (t∗, k∗) ← (t, k) and (t̃∗, k̃∗) ← (t,k).

Step2: If kick ≥ n holds, apply a random perturbation to the best solution (t̃∗, k̃∗) on the adaptive
evaluation function F̃ (·), to obtain the next initial solution (t, k), and set kick ← 0.

Step3: Start LS on the adaptive evaluation function F̃ (·) from the initial solution (t, k), to obtain
a locally optimal solution (t′, k′).

Step4: Modify the penalty weights wij for all pairs of Pi, Pj ∈ P. If F̃ (t′, k′) < F̃ (t̃∗, k̃∗) holds,
set (t̃∗, k̃∗) ← (t′, k′).

Step5: If F (t′, k′) < F (t∗, k∗) holds, set (t∗, k∗) ← (t′, k′) and iter ← 0, and return to Step2.

Step6: If iter ≥ max iter holds, output (t∗, k∗) and halt; otherwise set iter ← iter + 1 and
kick ← kick + 1, and return to Step2.

4 Computational experiments

We conducted computational experiments for six well known benchmark instances (Table 1), which
can be downloaded from the ESICUP web site2.

Table 2 and 3 show that comparison of our iterated guided local search (IGLS) with three
existing algorithms, 2DNEST (Egeblad et al., 2006), SAHA (Gomes and Oliveira, 2006), and BLF-
tabu (Burke et al.), in their best efficiency and computation time in seconds.
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Table 1: The benchmark instances of the irregular strip packing problem
Instance NDS NTP NAV Degrees Height
Blaz1 7 28 6.29 0,180 15
Shapes0 4 43 8.75 0 40
Shapes1 4 43 8.75 0,180 40
Shirts 8 99 6.63 0,180 40
Swim 10 48 21.90 0,180 5752
Trousers 17 64 5.06 0,180 79

NDS: The number of different shapes
NTP: The total number of polygons
NAV: The average number of vertices of different shapes

Table 2: Computational results of IGLS and other existing algorithms in the best length and
efficiency

Instance IGLS 2DNEST SAHA BLF-tabu
Blaz1 26.67 26.60 25.84 †27.20

81.0% 81.20% 83.6% †79.41%
Shapes0 60.45 59.47 60.0 65.00

66.0% 67.09% 66.5% 61.38%
Shapes1 55.42 54.04 56.0 †58.40

72.0% 73.83% 71.25% †68.32%
Shirts 63.53 62.55 62.22 63.00

85.0% 86.33% 86.79% 85.71%
Swim 6319.70 6184.37 5948.37 6462.40

70.0% 71.53% 74.37% 68.45%
Trousers 250.35 242.44 242.11 243.40

87.0% 89.83% 89.96% 89.48%

†They used a hill-climbing algorithm instead of the tabu search.

We measure efficiency by both the required length and the ratio of the total area of the polygons
to the area of required strip R(W ). IGLS was run on each instance 10 times (Pentium IV 2.53GHz,
1GB memory), where the input parameter max iter was set to 100. Egeblad et al. (2006) ran
2DNEST on each instance 20 times using 10 minutes for each run (Pentium IV 3GHz). Gomes and
Oliveira (2006) ran SAHA on each instance 20 times (Pentium IV 2.4GHz). Burke et al. (2006)
ran BLF-tabu on each instance 40 times (Pentium IV 2.0GHz). In Table 3, the columns of IGLS
and SAHA show the average computation time, the column of 2DNEST shows the time limit of its
computation, and the column BLF-tabu shows the computation time to find the best solution in
the run found it.

SAHA shows the best results in the four algorithms; however, it spends much more computation
time than the other algorithms. IGLS shows better results than those of BLF-tabu in efficiency and
computation time except for Shirts and Trousers; however, it shows worse results than 2DNEST
even taking account for the computation time. We note that it is not precise comparison of IGLS
and the other algorithms, since IGLS solves the overlap minimization problem while the other
algorithms solve the irregular strip packing problem. Nevertheless, IGLS finds no overlapping
solution within short time for closely best efficiency in the literature. It is the future study to
develop an efficient algorithm that minimizes the required strip length without any overlapping

2http://www.apdio.pt/esicup/
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Table 3: Computational time of IGLS and other existing algorithms (in seconds)
instance IGLS 2DNEST SAHA BLF-tabu
Blaz1 174.6 600 2257 †501.91
Shapes0 40.7 600 3914 1515.49
Shapes1 66.9 600 10314 †1810.14
Shirts 56.2 600 10391 806.5
Swim 243.5 600 6937 607.37
Trousers 105.7 600 8588 3611.99

†They used a hill-climbing algorithm instead of the tabu search.

polygon.
Fig. 4–8 show the best solutions for five benchmark instances, Blaz1, Shapes1, Shirts, Swim

and Trousers.

Figure 4: The best solution for the “Blaz1” instance

Figure 5: The best solution for the “Shapes1” instance

Figure 6: The best solution for the “Shirt” instance
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Figure 7: The best solution for the “Swim” instance

Figure 8: The best solution for the “Trousers” instance

5 Conclusions

In this paper, we present a local search algorithm for the irregular strip packing problem. We
consider an overlap minimization problem which minimizes the amount of overlap penalty for all
pairs of polygons within a given bound of strip length. We propose a fast neighborhood search
which alternately translates a polygon in horizontal and vertical directions, so as to minimize the
overlap penalty with the polygon. The neighborhood search can quickly compute a new position of
the translating polygon by the projection checking and the no-fit polygon. We incorporate it in the
iterated local search and the guided local search approaches. The computational results show that
our algorithm attains competitive results to the best results previously published within shorter
computation time.
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